留萌地方北部、初山別村周辺における重力測定

Gravity survey around the Syosanbetsu Village, Northwestern Hokkaido, Japan

田村 慎・石丸 聡・村山泰司・山本明彦*・名和一成** Makoto Tamura, Satoshi Ishimaru, Yasuji Murayama, Akihiko Yamamoto and Kazunari Nawa

Abstract

The northwestern part of Hokkaido, is recognized as the boundary between the Okhotsk and the Amurian plates and seismically very active. Several historical records indicate that about M6.5 earthquake certainly occurred in northern Shosanbetsu village, northern part of Rumoi region, in 1874. But seismic fault and related crustal structure is unknown.

For the purpose of investigating the subsurface structure and seismic fault in this region, we performed gravity surveys and compiled pre-existed gravity data of Japan Petroleum Exploration Co., Ltd. (JAPEX), Geological Survey Institute (GSI) and Geological Survey of Japan, AIST.

We invert 2,678 gravity data for mapping the lateral density variation of the surface terrain in this area. Density distributions are calculated based on the Akaike's Bayesian Information Criterion in which optimum trade-off parameters control the smoothness of Bouguer anomaly surface against its fitness to the observed gravity. In the result, the estimated terrain density correlates well with major geological units and known faults.

A new bouguer anomaly map with calculated surficial density for assumed density is generally corresponds to geological feature. Horizontal gradient map of gravity anomaly shows that three steep horizontal gradient exists western part of anticlines.

キーワード: 重力探査,初山別村,重力異常急変帯,表層密度構造解析 Key words: Gravity survey, Shosanbetsu village, steep horizontal gradient zone, Terrain density analysis.

I はじめに

北海道北西部は,北海道内陸部の中でも微小地震活動が活発な地域であり(森谷,1986:田村ほか,2003),2004年12月には留萌地方南部でマグニチュード(M)6.1の地震が発生し,震源付近で家屋破損などの被害が発生している(田村ほか,2005).

高橋・笠原(2005)は、留萌支庁沿岸部の地震活動 について再検討を行った結果、1874年に初山別北部で M6.3-M6.4の地震が発生していたことを歴史資料から 明らかにした.また、田近ほか(2006)は別の歴史資 料から地震の大きさはM6.5であったとし、また初山 別村北部、歌越地区周辺の海岸で地震時に発生したと される地すべりの跡を検出した.しかし、地表に活断 層としての痕跡は見られず、震源断層に対応する構造 は把握されていない.

物理探査の一つである重力探査は、地表の重力が地 下の密度構造を反映することを利用した探査手法で、 石油探鉱・地熱資源調査・活断層調査などによく用い られている. 探査結果から算出される重力異常値が急激に変化す る地域では、地殻浅部の密度分布が水平方向に大きく 変化していると推定され、その原因の1つとして地下 に埋没した断層構造が示唆される.これまで、重力異 常と地震活動、活断層などとの関連性について調査し た研究が多くなされている(たとえば、工藤・河野、 1999;井上ほか、2006)

今回,1874年に発生した地震の震源断層に結びつく 情報の検出を目指し,初山別村周辺において重力測定 を行うとともに,既存重力測定資料の収集を実施し, より詳細な重力異常分布を明らかにした.さらに,得 られたデータを用いた表層密度構造解析を行い,解析 データと地質情報との対比,解析データを用いた重力 異常図の作成を行った.

Ⅱ 地形・地質の概要

本研究の調査地域における地質図 [脇田ほか (2009) に加筆]を第1図に示す.

調査地域は天塩山地の西部に位置し、西側は日本海

に臨み,海岸線は南北に緩やかな弧状をなしている. 地質的には白亜系・古第三系が分布する南東部を除き, 新第三系および第四系の堆積層が広く分布している. さらに,南北走向の背斜・向斜構造が多数存在し,ま たこれと斜交する断層構造がみられる.

以下,本地域を北部,中部,南部に大別し,秦(1961), 秦・対馬(1968),松野・木野(1961)をもとに地形・ 地質の詳細を述べる.

北部地域(44°42′-54′N)では,沿岸部は第四系の 堆積層および段丘層が分布し,平地および浸食された 低い山地からなる.内陸部には更岸背斜と呼ばれる南 北走向の背斜構造があり,海岸線から約5km東側に背 斜軸を持つ丘陵状の山地となっている.背斜軸周辺に は新第三系の堆積層が分布するが,周辺部は第四系の 堆積層からなる.さらに内陸側には遠別向斜と呼ばれ る南北走行の向斜構造があり,再び第四系の堆積層お よび段丘層が広く分布する.

中部地域(44°30′-42′N)では,海岸部は主に前面 に砂浜を持つ海食崖からなり,後背地に開析された海 成段丘が広がる.内陸部は大部分が古丹別層と呼ばれ る新第三系の堆積層(第1図,黄色の領域)が分布す る山地で占められる.山地は海抜500m以下の開析の

第1図 当該領域の表層地質図. 20万分の1日本シームレス地質図DVD版(脇田ほか, 2009)に加筆. 図内赤線は背 斜軸,青線は向斜軸,黒点線は築別断層群の位置を示す.

Fig. 1 Simplified geology map in study area. This is simplified from Wakita et al. (2009). Red lines, blue lines and black dash lines indicate anticlines, synclines and Chikubetsu Faults, respectively.

進んだ低山地であり、南北に伸びる尾根部を境として 西側に緩傾斜し、東側に急傾斜をなしている。一方、 領域内には尾根部の西側2~3km付近に背斜軸を持つ 歌越別背斜があり、東緩西急の構造をなしている。東 部には、遠別向斜が北部地域から連続して分布し、遠 別川が向斜軸上を流れる向斜谷をなしている。

南部地域(44°18′-30′N)は、これまでみられた南 北方向の構造と斜交する北西-南東走向の築別断層群 (築別背斜断層,初山別断層)の存在が特徴的である. 海岸部は中部地域と同様の状況にあるが、羽幌川の河 口域にあたる羽幌市街などでは第四系堆積層が分布す る.内陸部は新第三系および古第三系の堆積層が分布 する山地が広がり、山地内に南北走向の羽幌背斜が存 在する.さらに内陸側、領域内南東部の一帯は白亜系 の堆積層が広く分布する.

Ⅲ 重力探查

初山別村周辺では、これまで国土地理院,地質調査 所(現:産業技術総合研究所),北海道大学,石油資源 開発株式会社などによって重力探査が実施されている. しかし、当該地域では山間部のデータが少なく、また 非公開となっているデータも多いことから、今回石油 資源開発株式会社による北海道北西部の稠密重力デー タをはじめ、本多ほか(2009),地質調査所(編)(2000), 国土地理院(2006)の既存探査データの収集を行い、 さらに追加探査を実施した.

追加探査にあたり,今回の探査領域として初山別村 ~遠別町南部(北緯44°18′-54′,東経141°36′-142°) の約70×30kmの範囲を設定した.測定は2008年8月19-21日,11月4-7日,2009年6月30日-7月3日,8月11日-14 日,10月6日-9日に実施し,合計276箇所で測定を行っ た.本報告の最後に追加探査のデータを収録する(付 表).最終的に既存データとあわせて2678地点の探査 データを収集した(第2図).

探査に用いた重力計はScintrex社製のCG-3M型重力 計である.本研究では閉塞測定を利用した相対測定を 行うため,観測拠点の宿付近に2008年には基準点ASH (北緯44°39′27″,東経141°51′51″,標高35.42m)を, 2009年には基準点MSK(北緯44°33′39″,東経141°46′ 52″,標高35.94m)を設置した.これらの基準点と絶 対重力既知点である国土地理院新十津川(人工衛星・ 重力)観測室内の一等重力点(北緯43°31′44″,東経 141°50′40″,標高82.90m,重力値980495.59mGal)と の往復閉塞測定を行うことで,新しい基準点の重力値 を決定した.

測定点座標は主に現地にてGPSを用いて測量した, 測量にはライカジオシステムズ社製SR20GPS受信機 を用いた.得られたデータは国土地理院電子基準点 「遠別」の提供データを用い,ライカジオシステムズ

- 第2図 重力探査地点図. 図中黒丸が新規に探査を実施した地点、三角印は産業技術総合研究所(2000)、国土地理院(2006)、本多ほか(2009)による公開データ. 灰色丸印は石油資源開発株式会社による非公開データをそれぞれ示す.
- Fig. 2 Previously and newly installed gravity stations over study region. Black solid circles indicate newly obtained data in this study. Triangles indicate previously obtained data (GSJ (2000), GSI (2006) and Honda et al. (2009)). Gray solid circles indicate unreleased data by JAPEX.

製ソフトウェア「ライカジオオフィス」を用いて解析 を行った. 位置決定精度は水平・標高とも10cm以内 であった.

各測点で得られたデータに対し,潮汐補正およびド リフト補正,器械高補正を行い,測定点での絶対重力 値を算出した.潮汐補正値は中井(1979)により算出 し,潮汐補正済みの重力値について,現地基準点での 開始時と終了時における重力差が時間に比例するもの と仮定して,重力差を基準点での観測時刻からの経過 時間に比例してドリフト補正を行った.なお,本測定 で用いた重力計のドリフト値は約15µGal/h程度であっ た.また,器械高補正値は0.3086mGal/mで算出して いる.その後,ブーゲー異常値を,

BA=g-γ+βh-BC (ρ) +TC (ρ) +AC の式から算出した. ここで g:絶対重力値 γ:正規重力値
 β:フリーエア勾配
 h:標高
 BC:ブーゲー補正値
 TC:地形補正値
 AC:大気補正値
 ρ:補正密度

である.フリーエア補正は一律に0.3086mGal/mとした.絶対重力はJGSN96に準拠し,正規重力値はGRS 1980に基づいて算出した.ブーゲー補正は半径80km の範囲で有限の球帽による補正(萩原,1978)によって行った.地形補正はYamamoto (2002)による球面地形補正法により算出,数値地形モデルは国土地理院の50mDEM (国土地理院,2001)を使用した.大気補 正値は0.87-0.0965hで算出した.

Ⅳ 表層密度構造解析

今回得られた稠密な重力データをもとにして重力イ ンバージョンを行い,探査領域における地殻表層(ジ オイド面以浅)の岩石の平均的な密度分布を推定する 表層密度構造解析を実施した.

表層密度構造の推定にあたって、Nawa et al. (1997) によるABIC法を適用した重力インバージョン法を用 いた。ABIC法は最近の情報理論を応用した方法であ り、従来の密度推定方法では上手く仮定密度が求まら なかったケースでも合理的な推定値が得られることが 知られている. これは、従来の手法では領域全体ある いはメッシュ化された各領域に対して真のブーゲー異 常値を平面近似することで地形とブーゲー異常間の相 関を排除しようとするのに対し、ABIC法では真のブー ゲー異常値を観測値から計算されるブーゲー異常値に あてはめた滑らかな曲面で近似しているためである. ここで、曲面近似あるいは曲線近似において、できる だけ残差を小さくすることと、できるだけ滑らかにす ることは両立しない概念であり、両者の間の整合性を 保つため、トレードオフパラメータを導入する必要が ある. このパラメータを調節し、最適解を算出するた めに赤池のベイズ情報量基準(ABIC)が用いられて いる.

さらに、元々この手法は対象領域をひとつのメッシュ として扱い、その領域を代表するひとつの最適な推定 密度を求めるものであったが、本手法はそれを拡張し、 分割した各メッシュ領域の推定密度そのものをパラメー タとして扱い、すべての密度値を一括して求めること が可能である.ただし、各メッシュ内には、ある程度 以上の観測データが分布する必要がある.

なお、ABIC法を含めた表層密度(仮定密度)推定 手法についてはYamamoto(1999)を、道内における ABIC法を用いた表層密度構造推定の例として山本(2) 005, 2004)を参照されたい.

本調査ではまず対象領域全体を一つのメッシュとし て表層密度を算出し、その密度として2.07g/cm³を得た. 対象領域の地表を広く覆う古丹別層の平均的な密度値 は凡そ2.2~2.4g/cm³とされ(本多ほか、2007)、これ より若干低密度の値が算出された.これは海岸沿いお よび北部における第四紀堆積層の存在が影響したもの と考えられる.その後、メッシュの大きさを試行錯誤 的に設定して解析を行った.その結果、議論可能なメッ シュの大きさとして1.875′×1.25′(約2.5km四方)が 得られた.

第3図に解析結果を示す.図内の赤色のメッシュは 表層密度が低いと推定され、青色に近づくほど表層密 度が高いと推定されたことを示す.また、空白部のメッ シュはデータ不足により解析を実行しなかった範囲 (主に海域)を示し、灰色および黒色のメッシュは1.0 ~3.4g/cm³のスケールから外れた値が算出された範囲 を示す.第4図は第3図の解析の際に算出された密度誤 差を示す.赤色のメッシュはほとんど誤差が無く、青 色になるに従って誤差が大きく推定されたことを示す. ここで誤差が0.3g/cm³以上の範囲については空白とし ている.

これらの結果および表層地質との対比からわかる主 な特徴として、以下の点が挙げられる。

- (1)全体的に、各メッシュの密度は低く推定され、 2.0g/cm³前後の値となった.このことは、対象領 域全体の表層密度として2.07g/cm³が得られたこと と調和的である.
- (2) 沿岸部および北部では2.0g/cm³以下と低密度の値 が得られた.これは第四系堆積層の分布域と対応 する.また,密度誤差が0.3g/cm³を超えるメッシュ が多くみられた.密度誤差が大きくなった要因と して,平野部が多く,メッシュ内の探査地点間で 標高の差が小さかったためと考えられる.
- (3)一方,中央部~南東部では2.0~2.6g/cm³と比較的 高密度の値が得られた.これは古丹別層および古 第三系,白亜系の分布域と対応する.密度誤差は 概ね0.2g/cm³以下と小さい値であった.
- (4) 44°30~42′ N, 141°48′ E付近では、古丹別層の西 側境界にあたる部分に表層密度の鮮明なギャップ が検出された.これは東緩西急の歌越別背斜構造 の存在と調和的である.
- (5) 北西-南東走向の築別断層群が分布している地域では、周辺より低密度の推定値が得られた。断層に伴う破砕帯が存在している可能性がある。

以上のように,今回得られた表層密度分布は,表層 地質構造,断層分布と非常に良く対応する解析結果と なった.一方,表層地質と対応しない密度境界の存在 留萌地方北部,初山別村周辺における重力測定 (田村 慎・石丸 聡・村山泰司・山本明彦・名和一成)

第3図 重力インバージョンによる表層密度解析結果. 探査領域を1.875′×1.25′(2.5km四方)に分割し, 各メッシュ に対する最適値を算出した.

Fig. 3 Surficial density distributions inferred from gravity inversion in study area. We devided the survey area into a set of blocks with a mesh size of $1.875' \times 1.25'$ (about 2.5×2.5 km), to the centers of which we assign a representative surficial density calculated from gravity inversion.

第5図 本探査で得られたデータを用いた重力異常図. 仮定密度は第3図の表層密度解析結果を用い,密度誤差の大きい地点では2.07g/cm³とした. 黒丸は探査地点を示す. 図内赤線は背斜軸,青線は向斜軸,黒点線は築別断層群の位置を示す.

Fig. 5 Newly obtained Bouguer anomaly map. Assumed density is used by surficial density distribution data in Fig.3 and also used 2.07g/cm³ for poorly estimated area. Black circle indicate survey points. Red lines, blue lines and black dash lines indicate anticlines, synclines and Chikubetsu Faults, respectively.

第6図 ブーゲー異常勾配強度分布図.背景に地形陰影を表示している.また,赤線は向斜軸,青線は背斜軸,黒 点線は築別断層群をそれぞれ示す.

Fig. 6 Distribution of horizontal gradient of the Bouguer anomaly. Digital topography (background shaded image) are superimposed. Red lines, blue lines and black dash lines indicate anticlines, synclines and Chikubetsu Faults, respectively.

を示唆する結果は得られなかった.

▼ 表層密度解析結果を考慮した重力異常

第5図に今回得られたデータを用いたブーゲー重力 異常分布図を示す.ローカルな地表地質の影響を除い た異常図を表示するため、ブーゲー異常値を算出する にあたっての仮定密度として、表層密度構造解析でメッ シュ毎に得られた値を採用した.ただし、解析されな かったブロックおよび密度誤差が大きかったブロック 内のデータについては、対象領域全体の密度として得 られた2.07g/cm³を用いた.

得られた重力異常図は、対象領域中央部から南東部 にかけて広がる正の異常域と、沿岸部および北部の負 の異常域で特徴付けられる.これは表層地質の分布状 況と概ね一致している.また、背斜構造部では背斜軸 を中心に周辺より高い重力異常値が、向斜構造部では 向斜軸を中心に低い値が得られ、さらに築別断層群付 近では値のばらつきによるコンターの乱れがみられる など、地表地質の傾向と概ね整合する結果が得られた.

しかし,探査領域中央部の歌越別背斜では,正の異 常域の中心部は背斜軸の東側に存在している.このこ とは,深部の地質構造が地表部と大きく異なっている ことを示唆する.

重力異常分布から密度急変帯に関する情報を抽出す るため、勾配強度分布図を作成した. この手法は、重 力異常の水平方向の微分、つまり、勾配の異常を調べ ることによって重力異常の急変帯を定量的に検証し、 対象領域の断層場および構造ブロックのテクトニクス との関連を調べるものである. その算出方法は、重力 異常分布Bを直接、スプライン関数として与え、勾配 強度の定義として、

$\sqrt{\left(\frac{\partial \mathrm{B}}{\partial x}\right)^2 + \left(\frac{\partial \mathrm{B}}{\partial y}\right)^2}$

を採用するものである.作成された強度分布図は, 勾配異常の方向性がなく,その強度のみが絶対値とし て示されることに注意する必要があるが,これにより 重力異常急変帯を視覚的に捉えやすくすることが可能 となる.

第6図に勾配強度の計算結果を示す. ここで示した 勾配強度の範囲は0~10mGal/kmであり,通常では勾 配強度が4~5mGal/km程度を超える場合には,明瞭な 重力異常の急変帯として認識されることが多い. 勾配 強度分布図の中央部,141°48′E付近にほぼ南北の走 向を持つ急変帯が3箇所検出された.

これらの急変帯は、各々の長さが約10kmあり、M6 級の地震断層となりうる規模であるが、急変部は古丹 別層の西側境界部にほぼ一致する位置にあることから、 検出された急変帯は表層から続く地質構造境界を反映 したものと考えられる.

ただし,2004年留萌支庁南部地震の震源域が背斜構 造部と概ね一致し,また背斜構造に対応する高重力異 常域が検出されていること(本多ほか,2007),さら にこの地震を含めた北西北海道沿岸部の活構造が東傾 斜の断層によるものと考えられていること(高橋・笠 原,2005)から,これらの背斜構造が活構造である可 能性も考えられ,今後の検討が必要である.

Ⅵ まとめ

北海道北西部,留萌地方北部地域において,1867年 に発生したとされる地震の震源断層に結びつく情報の 検出を目指し,重力探査および表層密度構造解析を実 施した.

重力探査データの収集にあたっては、産業技術総合 研究所、北海道大学および国土地理院による公開資料 に加え、石油資源開発株式会社による非公開資料を用 いた. さらに、データの抜けている山間部の276地点 で新たな重力探査を実施し、最終的に2678地点のデー タを収集することが出来た.

表層密度構造解析にはABICインバージョン法を用い,ジオイド面以浅の岩石の平均的な密度を算出した. また,対象領域を約2.5km四方のメッシュに分割し, 各メッシュの推定密度をひとつのパラメータとして一 括算出した.

解析結果を表層地質と対比させたところ,探査領域 内の新第三紀層の背斜構造に対応した高密度域が検出 されるなど,表層地質と非常に良く対応していること が確認された.高密度帯の西側境界には密度構造の急 変部が検出されたが,他に伏在する構造境界などの情 報は得られなかった.

得られた密度分布を仮定密度とした重力異常値を算 出し、重力異常図および勾配強度分布図を作製した. その結果、探査領域中央部に位置する背斜構造部には 高重力異常域が検出され、その西側には異常値の急変 するエリアが南北に帯状に連なって検出された. この 急変帯はM6級の地震断層となりうる規模だが、既存 の地質境界とほぼ一致するものであり、今後の十分な 検証が必要である.

謝 辞

石油資源開発株式会社には貴重な重力探査資料を提 供していただきました.アースサイエンス株式会社の 岡 孝雄氏には初山別村周辺の地形・地質の詳細につ いてご教示いただきました.また,初山別村の方々お よび関係各位には重力探査に御協力いただきました. 心から感謝の意を表します.

- 井上直人・楠本成寿・竹村恵二 (2006):重力異常からみた 活断層・地震活動・地殻変動.月刊地球,号外,54,233-238.
- 地質調查所(編)(2000):日本重力CD-ROM.数值地質図P-2,地質調查所.
- 萩原幸男(1978):地球重力論. 共立全書, 242p.
- 秦 光男(1961):5万分の1地質図及び同説明書「初浦」、地 質調査所、68p.
- 秦 光男・対馬坤六(1968):5万分の1地質図及び同説明書 「遠別」,地質調査所,37p.
- 本多 亮・神山裕幸・山口照寛・市原 寛・茂木 透 (2007): 2004年留萌支庁南部地震震源域の重力測定. 北海道大学 地球物理学研究報告, 70, 27-41.
- 本多 亮・笠原 稔・茂木 透 (2009):北海道北部地域の 重力測定 (その2).北海道大学地球物理学研究報告, 72, 203-218.
- 国土地理院 (2001):数値地図50mメッシュ (標高), CD-ROM (日本-I).
- 国土地理院 (2006):重力データ検索 (http://vldb.gsi.go.jp/ sokuchi/gravity/grv_search/gravity.pl).
- 工藤 健・河野芳輝 (1999):西南日本の重力異常勾配と地 震活動との関連. 地震第2輯, **52**, 341-350.
- 松野久也・木野義人(1961):5万分の1地質図及び同解説書 「築別炭砿」,北海道開発庁,49p.
- 森谷武男(1986):浅い地震活動と起震歪力から見た北海道 のテクトニクス、地団研専報、31、475-485.
- 中井新二(1979):実用的な起潮力計算プログラム,緯度観 測所彙報,18,124-134.
- Nawa, K., Y. Fukao, R. Shichi and Y. Murata (1997): Inversion of gravity data to determine the terrain density distribution in shouthwest Japan, J. Geophys. Res., **102**, 27703-27719.

- 田近 淳・田村 慎・川上源太郎・高橋浩晃・濱田誠一・志 村一夫(2007):1874年北海道初山別の地震に関する補 足的資料:斜面崩壊を中心に.北海道立地質研究所報告, 78, 175-182.
- 田村 慎・笠原 稔・森谷武男(2003):臨時地震観測による北海道北部地域の微小地震活動と地殻構造. 地震第2
 輯, 55, 337-350.
- 田村 慎・川上源太郎・鈴木隆広・岡崎紀俊・岡 孝雄 (2005):平成16年12月14日に留萌支庁南部で発生した地 震の現地調査報告-地質被害・地震動・温泉への影響-. 北海道立地質研究所報告,76,113-128.
- 産業技術総合研究所地質調査総合センター(編)(2003):20 万分の1数値地質図幅集「北海道北部」.数値地質図G20-1、産業技術総合研究所地質調査総合センター.
- 高橋浩晃・笠原 稔 (2005):留萌支庁沿岸部の地震活動と 北海道北部のテクトニクス. 北海道大学地球物理学研究 報告, 68, 199-218.
- 脇田浩二・井川敏恵・宝田晋治(編)(2009):20万分の1シー ムレス地質図DVD版.数値地質図G-16,産業技術総合研 究所地質調査総合センター.
- Yamamoto, A. (1999): Estimating the optimum reduction density for gravity anomaly: A theoretical overview, J. Fac. Sci., Hokkaido Univ., 11, 3, 577-599
- Yamamoto, A. (2002): Spherical Terrain Corrections for Gravity Anomaly Using a Digital Elevation Model Gridded with Nodes at Every 50m, Jour. Fac. Sci., Hokkaido Univ., Ser. VII (Geophysics), 11, No.6, 845-880.
- 山本明彦 (2004):重力インバージョンによる北海道東部の 表層密度分布. 北海道大学地球物理学研究報告, 67, 31 1-325.
- 山本明彦(2005):重力インバージョンから求めた北海道石 狩地域の表層密度分布.北海道大学地球物理学研究報告, 68, 109-125.

留萌地方北部,初山別村周辺における重力測定 (田村 慎・石丸 聡・村山泰司・山本明彦・名和一成)

付表 重力データー覧. 仮定密度は2.67g/cm³とした. 絶対重力はJGSN96に準拠している. B.A.はブーゲー異常値, T.C.は地形補正値.

Appended Table Observed gravity data. Assumed density is 2.67g/cm³. Gravity values are referred to JGSN96. B.A.: Bouguer Anomaly. T.C.: Terrain Correction.

Stn	Latitude	Longitude	Alt	G-obs	BA	TC	Stn	Latitude	Longitude	Alt	G-ohs	BA	TC
oun.	(° N)	(° F)	/ iic.	mGal	mGal	mGal	001	(° N)	(° F)	/ iic.	mGal	mGal	mGal
VCU	44 65077	141.06000	25.40	000576 702	4.00	0.07	66	44 65 404	141 02025	50.74	000573 500	2.00	1.05
ASH	44.00977	141.86028	35.42	980576.703	-4.23	0.87	00	44.05484	141.92035	50.74	980573.588	-2.90	1.85
MSK	44.56319	141.77733	35.94	980568.199	-4.40	0.35	67	44.65231	141.91918	56.66	980573.239	-1.53	2.18
1	44.56341	141.77920	37.32	980567.450	-4.91	0.34	68	44.65158	141.91602	63.57	980572.629	1.20	4.09
2	44.55769	141.82079	51.58	980568.132	-0.43	0.81	69	44.65110	141.91263	66.84	980572.753	1.11	3.20
3	44.63993	141.79391	8.35	980568.866	-16.28	0.17	70	44.47722	141.97711	186.15	980541.504	8.07	2.21
4	44 63917	141 79472	8 56	980567 690	-17 31	0.20	71	44 48925	141 97577	189 28	980541 678	7 31	1 75
5	44 63987	141 79922	12.48	980566 662	-17.71	0.14	72	44 49913	141 97948	155.07	980550 328	8 1 3	1 54
6	44.62005	141.00070	10.00	000567.040	17.14	0.14	72	44.50602	141.06706	100.07	000551.020	7.40	0.00
7	44.03995	141.00270	10.00	980507.048	-17.14	0.15	73	44.00003	141.90790	159.04	980551.880	7.40	2.90
/	44.64026	141.80632	12.42	980567.568	-16.82	0.16	74	44.51811	141.96454	153.65	980550.169	6.50	2.06
8	44.64013	141.80994	17.56	980568.135	-15.17	0.22	/5	44.52990	141.96706	139.30	980552.483	4.19	1.33
9	44.64022	141.81361	16.51	980568.795	-14.75	0.20	76	44.54192	141.96755	113.78	980553.947	0.32	2.10
10	44.63967	141.81659	13.82	980569.434	-14.56	0.23	77	44.55370	141.96718	109.89	980555.098	-0.47	1.98
11	44.63630	141.81674	16.34	980569.526	-13.61	0.29	78	44.56450	141.96021	96.87	980559.965	0.80	1.93
12	44.63447	141.81683	17.23	980569.119	-13.73	0.24	79	44.57545	141.95435	106.44	980559.839	1.98	2.34
13	44 63198	141 81695	16.84	980569.408	-13.24	0.28	80	44 58841	141 95257	83.01	980567 140	3 17	1.84
1/	44.60030	141.01000	10.04	000560 647	_12.42	0.20	Q1	44.60006	141.04004	70 00	020560 206	2 2 2	1.04
15	44.02930	141.01/90	10.01	980508.047	10.00	0.24	01	44.00000	141.94004	70.00	980509.390	3.22	1.00
10	44.02728	141.81989	19.78	980568.842	-12.83	0.26	02	44.61240	141.94579	70.05	980571.896	3.39	2.19
16	44.62527	141.82177	20.43	980569.303	-12.00	0.31	83	44.62417	141.94167	59.94	980574.447	2.20	1.50
17	44.62290	141.82401	21.85	980569.187	-11.46	0.48	84	44.63816	141.93427	53.50	980574.027	-1.08	1.18
18	44.62076	141.82602	24.42	980569.330	-10.47	0.63	85	44.64835	141.93169	49.97	980572.842	-4.08	0.98
19	44.61861	141.82804	26.50	980569.468	-9.77	0.58	86	44.53638	141.76728	6.12	980572.090	-4.00	0.29
20	44.61646	141.83007	26.73	980570.246	-8.65	0.69	87	44.53732	141.77391	13.06	980571.922	-2.76	0.42
21	44 61425	141 83216	27 93	980571116	-7 30	0 73	88	44 53708	141 77900	16 47	980571 736	-2 15	0.52
22	44 61213	141 83416	29.25	980572.003	-6.08	0.61	89	44 53710	141 78586	28.76	980569 897	-1.52	0.58
22	44.01213	141.03410	23.23	000570.000	0.00 E 04	0.01	00	44.53710	141.70300	20.70	000570.675	0.60	0.50
20	44.01179	141.03004	31.47	980572.270	-5.24	0.72	01	44.03033	141.79155	28.00	980570.675	-0.02	0.07
24	44.61231	141.84003	34.41	980573.821	-2.90	0.98	91	44.53553	141.79750	36.91	980568.661	-0.96	0.63
25	44.61183	141.84341	40.03	980573.533	-1.80	1.22	92	44.53450	141.80397	42.97	980567.723	-0.32	0.92
26	44.61135	141.84662	37.73	980574.521	-0.76	1.68	93	44.53586	141.79505	34.29	980569.343	-0.80	0.65
27	44.61140	141.85000	39.73	980574.733	-0.72	1.12	94	44.53303	141.79703	51.39	980565.229	-0.62	1.33
28	44.61048	141.85332	41.19	980574.455	-0.28	1.46	95	44.52934	141.79545	77.83	980559.371	-1.47	0.81
29	44.61000	141.85723	43.83	980574,164	0.43	1.90	96	44.52576	141.78976	55.35	980562.750	-1.86	1.13
30	44 60822	141 85911	42 75	980573 795	0.28	217	97	44 52154	141 78793	27 41	980567 334	-2 98	0.53
31	44 60479	1/1 95932	16.45	080573 382	0.45	1 72	98	44 51 770	1/1 70270	26.07	020567 302	-2.41	0.79
22	44.00473	141.00032	10.40	000570.005	12.00	0.21	00	44.51770	141.75270	20.37	000566.015	2.41	0.70
02	44.04037	141.62049	16.04	980570.025	-13.00	0.31	100	44.51450	141.79560	30.18	980300.813	-2.15	0.71
33	44.64046	141.82420	14.64	980571.269	-12.28	0.58	100	44.51084	141./966/	41.56	980564.376	-2.08	0.65
34	44.64005	141.82765	20.92	980571.451	-11.05	0.36	101	44.50718	141.79899	46.17	980562.748	-2.32	0.80
35	44.64072	141.83101	20.16	980572.811	-9.53	0.73	102	44.50242	141.80128	52.50	980559.993	-3.28	0.91
36	44.64075	141.83461	23.66	980573.883	-7.74	0.76	103	44.50000	141.80447	53.68	980560.301	-2.65	0.78
37	44.64111	141.83822	23.02	980575.670	-6.04	0.83	104	44.49716	141.80755	50.77	980560.661	-2.50	0.89
38	44.64182	141.84175	28.63	980577.023	-2.47	2.02	105	44.49325	141.81066	57.35	980558.178	-3.12	1.11
39	44.64236	141.84531	30.61	980577.356	-2.27	1.53	106	44,49039	141.81402	58.14	980558,176	-2.44	1.37
40	44 64301	141 84889	32 51	980577 407	-2.20	1 24	107	44 48678	141 81734	76.36	980554 646	-2.33	1 1 1
41	11.01001	1/1 85220	25.11	080576.011	-1.80	1.59	108	11.10070	1/1 822/2	80.40	080554 382	-1.44	1.11
10	44.04240	141.05220	25.46	000576.054	2.00	1.50	100	44.40402	141.02242	17.06	000560 401	2.04	0.50
42	44.04122	141.85517	35.46	980576.954	-2.00	1.15	1109	44.52436	141.78337	17.96	980569.431	-2.94	0.59
43	44.64088	141.85827	43.51	980575.930	-1.28	1.29	110	44.52/93	141.//842	13.97	980569.960	-3.46	0.65
44	44.64129	141.86261	42.53	980576.133	-0.71	1.89	111	44.53071	141.77412	9.41	980570.980	-3.76	0.48
45	44.64123	141.86598	49.10	980575.658	0.12	1.89	112	44.53191	141.76786	3.50	980571.025	-5.18	0.28
46	44.63985	141.86960	46.03	980575.789	-0.29	1.83	113	44.53885	141.78967	62.69	980562.997	-2.13	0.37
47	44.63855	141.87119	47.50	980575.578	-0.17	1.76	114	44.54077	141.79273	54.68	980565.022	-1.60	0.61
48	44.63665	141.87410	52.16	980574.699	-0.09	1.62	115	44.54318	141.79443	47.74	980566.759	-1.36	0.70
49	44 62866	141 81360	19 55	980567 174	-14 72	0 20	116	44 54665	141 79681	78 48	980560 456	-2 34	0.30
50	11.02000	1/1 91073	22.79	080565 474	-15.43	0.24	117	44 55013	1/1 20352	56.40	080565 407	-1.51	0.00
50	44.02729	141.01073	23.70	980505.474	-10.40	0.24	110	44.00013	141.00330	10.49	980505.497	-1.51	0.72
51	44.62594	141.80790	35.90	980562.143	-16.29	0.21	110	44.55165	141.80474	46.42	980567.980	-1.37	0.49
52	44.62390	141.80629	50.53	980558.575	-16.76	0.24	119	44.55620	141.80675	53.83	980566.590	-1.51	0.70
53	44.62258	141.80404	48.19	980558.590	-17.16	0.17	120	44.55687	141.81163	37.29	980570.397	-1.20	0.51
54	44.62455	141.80244	45.55	980559.201	-17.23	0.19	121	44.55970	141.81310	51.73	980567.299	-1.50	0.73
55	44.62692	141.80090	45.78	980559.052	-17.55	0.18	122	44.56404	141.81154	69.96	980562.816	-3.00	0.53
56	44.62873	141.79872	50.56	980557.681	-18.08	0.25	123	44.56796	141.80948	41.31	980568.726	-3.16	0.44
57	44,62983	141,79563	45.17	980559.073	-17.80	0.30	124	44,57152	141,80911	29.54	980570.630	-3.69	0.64
58	44 63215	141 79462	41 10	980560 004	-17 79	0.20	125	44 57117	141 80272	28.22	980570 451	-4 36	0.37
50	44 60400	1/1 70/177	0460	000560.004	_17.00	0.20	120	44 57144	141 70273	20.20 0F 04	000570.401	_4.00	0.07
20	44.03462	141./94//	24.03	300303.033	-17.02	0.20	107	44.0/141	141./90/0	20.24	3003/0./23	-4.60	0.27
00	44.63/13	141./950/	8.02	980566.925	-1/.9/	0.24	127	44.5/1/5	141./9090	21.33	980570.938	-5.44	0.22
61	44.63861	141.79302	5.71	980567.989	-17.56	0.17	128	44.57202	141.78619	15.36	980571.846	-5.72	0.22
62	44.64383	141.81602	34.52	980562.282	-17.22	1.03	129	44.56855	141.78749	13.34	980573.799	-3.80	0.27
63	44.64712	141.81591	25.78	980566.128	-15.93	0.49	130	44.56511	141.78676	30.15	980570.038	-3.96	0.26
64	44.65822	141.92486	44.29	980572.166	-6.93	0.82	131	44.56158	141.79234	31.35	980570.370	-3.04	0.29
65	44.65635	141.92252	44.62	980572.456	-5.61	1.62	132	44.55928	141.79693	35.48	980569.929	-2.43	0.32

付表 続き Appended Table. continued.

Stn.	Latitude	Longitude	Alt.	G-obs.	BA.	TC.	Stn.	Latitude	Longitude	Alt.	G-obs.	BA.	TC.
	(°N)	(°E)	m	mGal	mGal	mGal		(°N)	(°E)	m	mGal	mGal	mGal
133	44 55878	141 80219	29.23	980571.678	-1 79	0.39	204	44 45825	141 87488	160 38	980543 674	7 31	2.62
124	44.550570	141.00215	20.20	000571.070	1.75	0.00	205	44.45760	141.07006	146 41	000544.460	F 22	2.02
104	44.55857	141.80765	33.28	980571.342	-1.11	0.60	200	44.45768	141.87026	140.41	980544.468	5.33	2.55
135	44.55/54	141.81397	39.29	9805/0.134	-1.13	0.51	206	44.47723	141.85827	124.45	980552.600	7.54	2.71
136	44.55588	141.81961	48.27	980569.212	0.00	0.65	207	44.47782	141.86593	137.38	980551.320	8.63	2.60
137	44.55609	141.82544	52.27	980569.959	2.40	1.54	208	44.47774	141.87115	146.26	980549.327	8.27	2.47
138	44.55353	141.82867	50.34	980570.513	2.23	0.96	209	44.47682	141.87662	158.76	980546.670	9.06	3.38
139	44 55179	141 83337	58.86	980569 673	3 4 5	1 1 9	210	44 47734	141 87936	166.31	980545 350	9.00	3 20
1/0	44 55002	141 02672	65.00	000560 412	2.76	1.10	211	44 47029	1/1 00/20	104.10	000541.614	10.25	4 95
141	44.00093	141.03072	00.99	900000.413	3.70	1.27	211	44.4/920	141.00430	104.19	560541.014	10.25	4.00
141	44.555/2	141.80057	38.16	980569.454	-1./2	0.66	212	44.4/656	141.8/320	150.07	980547.917	8.50	3.26
142	44.54959	141.80829	51.97	980566.744	-1.14	0.69	213	44.47740	141.86162	131.81	980552.094	8.14	2.39
143	44.54555	141.81289	61.78	980564.599	-0.92	0.75	214	44.65959	141.85463	35.22	980576.409	-4.64	0.77
144	44.54234	141.81629	67.95	980563.687	-0.36	0.72	215	44.66058	141.85867	35.21	980576.718	-4.24	0.95
145	44 53973	141 82058	75 27	980563 631	1 96	1 4 2	216	44 51229	141 85366	140 50	980552 759	8 00	3.03
1/6	44 56241	141 77700	25.00	072052.654	_4.41	0.20	217	44 51100	141 96404	165.54	000547.052	0.00	2.00
147	44.50541	141.77700	35.69	973952.054	-4.41	0.30	217	44.51190	141.00404	100.04	960047.602	0.77	3.75
14/	44.57110	141.81525	35.82	980570.463	-2.77	0.46	218	44.51058	141.86044	155.23	980549.684	8.45	3.51
148	44.57072	141.82143	36.90	980571.020	-1.85	0.57	219	44.51109	141.85704	147.43	980551.393	7.66	2.59
149	44.56994	141.82693	40.56	980571.830	0.03	0.85	220	44.45826	141.87487	159.50	980543.716	7.22	2.67
150	44.57131	141.83218	47.40	980571.667	1.80	1.57	221	44.45914	141.87918	166.15	980543.207	8.21	2.94
151	44 57026	141 84034	51.81	980571 833	2 75	1 39	222	44 45912	141 88307	175 43	980541 233	8 42	3 2 9
152	44 56961	141 94310	50.83	080573 257	3.92	1.07	223	44 45013	1/1 99600	190 17	020537.254	9.69	4.24
152	44.50001	141.04310	77.40	900573.237	5.02	0.54	220	44.45013	141.00030	000.00	900505 700	0.00	9.29
100	44.57445	141.814/5	//.40	980560.015	-5.25	0.54	224	44.45901	141.89110	202.82	980535.733	8.47	3.45
154	44.57692	141.81884	80.53	980559.647	-5.43	0.35	225	44.46053	141.89512	215.75	980533.973	8.77	3.11
155	44.57979	141.81728	71.84	980560.437	-6.57	0.39	226	44.46077	141.89716	227.23	980531.578	8.64	3.14
156	44.58257	141.81397	40.27	980566.755	-6.50	0.59	227	44.46028	141.89816	230.82	980530.233	8.18	3.28
157	44 58570	141 80982	30.60	980567 593	-7 82	0.63	228	44 49450	141 87000	176 11	980545 323	8 77	2 63
158	44 59044	1/1 20023	65.60	080558 /01	-10.50	0.51	229	11 10 100	1/1 97761	208 27	020532 567	9.95	2.00
150	44.50044	141.01200	70.00	000557 102	10.00	0.01	220	44.60111	141.07220	00.16	000567.040	0.00	1.05
109	44.59266	141.81309	72.29	980557.123	-10.81	0.54	230	44.60111	141.8/338	80.16	980567.949	2.21	1.95
160	44.59423	141.81990	82.97	980555.851	-10.33	0.34	231	44.61214	141.93159	117.91	980561.266	3.88	3.88
161	44.59563	141.82304	83.82	980556.130	-10.00	0.35	232	44.60934	141.92659	192.63	980551.861	7.52	2.00
162	44.60123	141.82391	43.23	980564.836	-9.64	0.48	233	44.60631	141.92082	305.52	980520.646	-1.18	2.06
163	44.60460	141.82558	75.95	980557.504	-10.98	0.36	234	44.60451	141.91590	275.88	980527.222	-0.58	1.74
164	44 60530	141 82885	49 97	980564 866	-8.65	0 4 9	235	44 49603	141 85196	122 78	980554 173	7 00	2 63
165	44 60824	141 93126	33.06	080560 631	-7.22	0.57	236	44 60429	1/1 0120/	222.07	020536 612	1.00	214
166	44.00024	141.00120	00.00	380303.031	7.22	0.57	200	44.00423	141.91234	200.07	300530.012	1.00	2.14
100	44.61125	141.83203	30.66	980570.888	-/.01	0.44	237	44.60582	141.90518	1/6.4/	980548.471	1.37	2.10
167	44.63514	141.79496	24.57	980564.195	-17.27	0.23	238	44.60400	141.89740	109.68	980562.971	3.22	2.40
168	44.63268	141.79478	37.38	980561.264	-17.43	0.26	239	44.60214	141.89136	94.72	980565.324	3.12	2.72
169	44.63016	141.79531	45.04	980559.384	-17.53	0.31	240	44.60350	141.88166	79.47	980568.415	2.11	1.74
170	44.62909	141,79847	49.60	980558.364	-17.62	0.25	241	44.60205	141.87675	73.26	980569.862	2.96	2.23
171	44 62725	1/1 20071	46.39	080550 191	-17.32	0.10	242	44 60196	1/1 99663	84.55	020566 206	2.00	2.20
170	44.02723	141.00071	40.30	900559.101	10.00	0.13	040	44.00130	141.00003	100.07	900500.090	2.52	2.00
172	44.62533	141.80226	49.72	980558.683	-16.99	0.19	243	44.60346	141.89490	103.87	980563.650	2.64	2.23
1/3	44.61896	141.81109	55.33	980558.353	-15.63	0.21	244	44.60493	141.90059	147.07	980555.027	2.41	2.27
174	44.61647	141.81276	62.11	980557.081	-15.32	0.23	245	44.60455	141.90940	193.66	980545.167	0.96	1.49
175	44.61187	141.81626	67.70	980556.598	-14.19	0.32	246	44.60696	141.92560	190.05	980546.038	1.27	1.86
176	44.60895	141.82126	74.06	980556.377	-12.92	0.30	247	44.60954	141.92819	154.02	980553.841	2.65	2.76
177	44 60578	141 82352	76 12	980556 697	-11.89	0.32	248	44 61449	141 93701	82 14	980568 793	2 97	2 69
178	44 60227	141 02212	20.41	000560 520	-5.69	0.70	2/0	44.61560	141.04076	64.45	000572.000	2.07	1 5 2
170	44.00337	141.03313	39.41	980509.528	-0.00	0.70	2-13	44.01500	141.94070	04.45	980072.980	2.41	1.02
1/9	44.60087	141.83685	43.98	980569.757	-3.99	1.04	200	44.60055	141.87133	68.65	980570.246	2.00	1.66
180	44.60027	141.84183	48.90	980571.274	-1.10	1.38	251	44.60157	141.86986	67.47	980570.209	2.04	2.06
181	44.60006	141.84686	55.55	980570.827	0.13	1.73	252	44.60053	141.86723	59.02	980572.088	1.71	1.42
182	44.59770	141.82650	43.55	980565.973	-7.67	0.93	253	44.60236	141.86225	53.58	980572.734	1.71	2.01
183	44,59403	141.82793	50.42	980565.697	-6.49	0.71	254	44.65816	141.85085	26.73	980577.526	-4.92	0.91
184	11 58969	1/1 93121	50.05	080565 338	-4.57	0.72	255	44 65500	1/1 9/7/3	24 77	020572 351	-4.14	1.06
105	44.00000	141.03121	00.50	900505.440	4.07	0.72	200	44.05555	141.04743	24.77	900570.551	4.14	1.00
100	44.60368	141.818/1	33.52	980565.449	-11.06	0.58	200	44.65449	141.84337	22.00	980578.524	-4.29	1.01
186	44.60506	141.81267	28.02	980565.386	-12.34	0.57	257	44.65275	141.83953	21.86	980577.347	-5.31	1.17
187	44.60508	141.80719	23.96	980565.475	-13.11	0.51	258	44.65126	141.83804	21.76	980576.194	-6.75	0.77
188	44.60728	141.80192	21.15	980565.388	-14.14	0.31	259	44.65015	141.83650	23.94	980575.015	-7.55	0.62
189	44.58865	141.80380	19.72	980568.555	-9.16	0.73	260	44.64962	141.83438	24.95	980573.328	-9.11	0.50
190	44 59219	141 79989	16 79	980568 202	-10.80	0.33	261	44 64896	141 83245	25.35	980572 631	-9.72	045
101	44 50014	141 70470	10.70	000503.202	11.04	0.00	262	11.01000	141.00010	00.01	000571.040	10.01	0.10
100	44.59314	141./94/8	13.84	980567.895	-11.64	0.46	202	44.64908	141.83010	23.31	980571.948	-10.91	0.35
192	44.59450	141.79081	12.87	980567.455	-12.57	0.29	263	44.64972	141.82306	22.00	980570.194	-13.09	0.24
193	44.58443	141.78963	36.49	980563.595	-10.65	0.52	264	44.65220	141.79387	12.45	980566.801	-18.67	0.15
194	44.57710	141.78660	18.20	980569.542	-7.92	0.23	265	44.65422	141.80882	14.93	980567.951	-17.21	0.16
195	44.55728	141.78381	59.97	980564.024	-3.45	0.22	266	44.64944	141.81978	16.40	980570.321	-14.00	0.28
196	44 54349	141 76671	6 1 2	980573 300	-3.19	0.45	267	44 64963	141 82710	22.22	980571 110	-12.06	0.20
107	44 54343	1/1 76700	14.61	000570.000	_0.10	0.40	260	44 66500	141.02/10	16 50	000560 605	-10.04	0.23
100	44.04/43	141./0/23	14.01	300373.062	-2.1/	0.48	200	44.00039	141.01090	40.03	300300.023	-19.24	0.26
198	44.55349	141.//342	51.62	980565.944	-2.78	0.27	209	44.61180	141.83447	31.59	9805/1./60	-5.92	0.53
199	44.59852	141.79137	24.62	980564.214	-13.78	0.38	270	44.61107	141.83521	31.51	980571.846	-5.75	0.56
200	44.60433	141.79470	21.85	980564.553	-14.57	0.32	271	44.61273	141.83904	34.12	980573.335	-3.18	1.28
201	44.62029	141.80218	32.76	980562.375	-16.10	0.26	272	44.61205	141.84185	36.47	980574.028	-1.77	1.48
202	44,48601	141.83435	79.88	980557.605	1.95	1.67	273	44,61120	141.84493	39.43	980574.299	-0.83	1.48
203	44 48161	141 85041	102.26	980555.819	6.01	2 7 2	274	44 56319	141 77732	35.50	980568 121	-4.56	0.35
					0.01		- / .				000000.1E1	1.00	0.00